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MASS TRANSFER FROM A SINGLE BUBBLETOTHE DENSE PHASE OF A 

FLUIDIZED BED ATLARGE PECLET NUMBERS 

Yu. A. Buevich and A. N. Deryabin UDC 66.096.5 

Possible modes of mass exchange between a growing bubble and the dense phase under 
conditions of predominance of convective transfer are discussed. 

The productivity and quality of operation of catalyticchemical reactors and of a number 
of other apparatus containing an inhomogeneous fluidized bed depend on the intensity of gas 
exchange between the dilute and dense phases of the bed, The determination of the corre- 
sponding coefficientof mass exchange, which plays a very important role in modern systems 
of calculation of such apparatus (see the review in [i-3], for example), represents one of 
the central problems in modeling them. 

The number of experiments on the determination ofmass-exchange characteristics is very 
large (there is also a summary of them in [1-3]), but generalizing correlations which would 
permit the construction of a complete representation of the variation of these characteris- 
tics with variation in the fluidization conditions and of ways to intensify mass exchange 
are practically absent. This is connected both with the variety of the mechanisms of mass 
transfer in two-phase systems and of the factors influencing it and with the fact that the 
majority of the experimental data have been obtained by indirect means (by methods of a model 
chemical reaction or a tracer gas) from a comparison of the observed concentrations of the 
reagents at the exit from the reactor or of washing curves with results following from one or 
another model. 

A theoretical analysis of the specific roles of different mechanisms of the process of 
mass transfer under different conditions and possible limiting modes of realization of the 
process becomes especially necessary under such conditions. Very little has been done in 
this direction up to now. The theoretical model in [4], within the framework of which only 
the mass exchange of a bubble with the cloud of closed gas circulation surrounding it was 
allowed for, neglecting the diffusional resistance of the dense phase, evidently was the 
first. Unfounded assumptions of such a type were adopted later in [5-7]. Conversely, an 
equally unfounded assumption about the total gas mixing in the bubble and the cloud was adopt- 
ed in [8, 9], and then in [i0] also, and attention was concentrated on the investigation of 
convective diffusion in the dense phase outside the cloud. An attempt made by Kunii and 
Levenspiel [ii] to simultaneously allow for the resistance to mass exchange both outside and 
inside the cloud has an especially empirical character. 

It is important that in all these reports the influence of the variation of actual bub- 
bles as they rise in a bed on the mass exchange was entirely ignored. The volume of bubbles 
which are not too small grows in the process, i.e., there is a gas flux directed into the 
bubble. The convective transfer by this flux must hinder the removal of an impurity into 
the dense phase and, conversely, facilitate its penetration into the bubble, which is con- 
firmed, in particular, by the tests in [12, 13], conducted on a plane model of a bed contain- 
ing "two-dimensional" bubbles. The necessity of allowing for the influence of the growth 
of a bubble on its mass exchange with the dense phase was noted in [14, 15], where a theoret- 
ical analysis of the motion and growth of a bubble in a developed fluidized bed was proposed. 
Experimental data on bubble growth obtained by various authors are discussed in [16, 17], 
where empirical relations are proposed for the description of this effect. 
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In order to avoid the additional difficulties associated with the need to analyze the 
hydrodynamic interaction in a system of many bubbles and to allow for the variation in the 
state of the dense phase over the height of the bed~ below we will consider only the mass 
transfer from a single bubble to a dense phase whose characteristics are homogeneous, For a 
similar reason we neglect here the influence on the mass transfer of an impurity of homo~ 
and heterogeneous chemical reactions proceeding with its participation~ as well as its trans- 
fer by moving particles on whose surface it is capable of being adsorbed, In addition~ as 
in [4-11], we assume that the velocity of rise of the bubble exceeds the velocity of gas fil- 
tration in the dense phase, i.e., we consider only bubbles which would possess a cloud with 
closed circulation if their volumes remained constant. For simplicity~ we take the bubble 
and the region of closed circulation as spherical and analyze the transfer of gas through 
the outer boundary of this region. 

The true gas flow near a bubble can be represented approximately as a superposition of 
two flows: that generated by flow over a bubble of constant radius and the radial flow di~ 
rected toward the bubble and leading to its growth, We describe the first of these by the 
stream function [4] 

, = ( U - - u ) ( 1  R ~  r ~ (R .~3= U§  (i) 
-- r3! ~ sin 20, \R~] U--u 

Here we use a spherical coordinate system connected with the center of the bubble; the point 
of onflow of the stream corresponds to the value 0 = g of the polarangle. The velocity com- 
ponents u r and u 0 of this flow are obtained from (I) in the usual way, 

To describe the radial flow we adopt the::empirieal dependence of the radius of a buhb!e 
on its vertical coordinate h in the bed obtained in [17]; 

Rb ~ 0.93 (eu -- u,) 2 / 3h2 iag--l/3 (2) 

Using the Davis--Taylor equation 

dh/~  = U ,~ 0.71 (igRb) ~ /2 ~ (gR~ t /2 (3) 

for the velocity of rise of a bubble, from (2) we obtain the expression for the velocity of 
radial flow; 

( Rb ) 2 dRb dRb U , ~ O . 6 ( e u - - u , ) .  (4) 
\ r /  dt dh 

We write the equations of convective diffusion outside and inside the cloud in the form 

8 §  ~ . . . . .  + c' ~ V  V c' (5)  
, ,  Or r O0 eD" 

(quantities with a prime refer to the region inside the cloud), The effective coefficients 
of diffusion describe the molecular diffusion with allowance for a sinuosity factor and the 
convective dispersion due to random pseudoturbulent pulsations of the gas velocity (see [18])o 
The corresponding coefficients of dispersion depend on the local value of the filtration ve- 
locity relative to the particles, which depends both on the coordinates (in view of the non~ 
uniformity of the flow field) and on time (in view of the time dependence of the rise velocity 
of the growing bubble). Therefore, the coefficients D and D' in (5) also depend on time and 
the coordinates in general. Because of the assumption that the dense phase is homogeneous, 
these coefficients must be given by the same functional equations outside and inside the 
cloud. However, D' differs considerably from D inside the bubble itself, which is practical- 
ly free of particles, where D' approximately coincides with the coefficient of molecular dif~ 
fusion. 

The solution of Eq. (5) with coefficients dependent on the coordinates and time and with 
definite initial and boundary conditions represents a very complex task, even for a single 
bubble, and one can be confident of obtaining forseeable analytical equations for the gas 
flux through the outer boundary of the cloud, the coefficient of mass exchange~ etc., only 
in the simplest limiting cases under a series of additional simplifying assumptions, First 
of all, we assume that the Peclet number is large, so that it dominates the convective gas 
transfer. In this case the concentrations outside and inside the cloud differ from the cor ~ ~ 
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responding homogeneous values only in thin layers with thicknesses 6 and ~' on both sides of 
the sphere r = R c. The terms containing Ur and u 8 in (5) have the same order of magnitude 
within the limits of these layers, and it follows from (i) that u r - (U -- u)6/R c, Using the 
expression for v r from (4), we can see that in the very probable case when the inequalities 

(U--~8~ ~u--u,)Rc, (U--~8'~ ( e u - - u , ) R c .  (6) 

occur, wecan neglect the influence of the stream flowing over the cloud on the transfer of 
the impurity at its boundary in comparison with the influence of the radial flow. Converse- 
ly, when the inequalities opposite to (6) are satisfied the influence of the radial flow on 
the formation of the diffusional layers is unimportant. First of all, we must consider the 
limiting modes corresponding to the fulfillment of the inequalities (6) or of the strong inn 
equalities opposite to them. In doing this we can assume, in view of the thinness of the 
diffusional layers, that the inner layer lies entirely inside the cloud, and we make no 
distinction between D and D'. 

In obtaining order-of-magnitude functions it is natural to treat the problem in a "quasi- 
steady" formulation, neglecting the time dependenceof the velocities~ and thereby of the co- 
efficients of diffusion. Moreover, we neglect the dependence of D = D' on the coordinates, 
treating D as an effective coefficient characterizing the molecular diffusion and convective 
dispersion "on the average." We note that this assumption has been made in all the reports 
on the mass, exchange of bubbles known to the authors, in [4-11], in particular. For suffi- 
ciently large bubbles the time dependence of these quantities is actually quite weak; a de- 
pendence of the coefficient of diffusion on the coordinates leads, generally speaking, to a 
number of new effects, discussed in [19] on the example of another problem, 

Let inequalities (6) be satisfied. Then, changingto the coordinate system (p, 0), where 
p = r --Rc~ assuming that the velocity v r hardly depends on the coordinates within the limits 
of the diffusional layers, and retaining only the principal term on the right side of (5), 
we obtain 

-O-i - 2 V  c' = D  .. , V = v o  p = r - - R ~ .  ap~ c' ~, -R--c-~ / (7) 

We seek the solution of (7) with the conditions 

c=%, t=0, p>0; c=c'o, t=0, p<0; c--~co, p-+=~; 

c'-+c~, p-~ -- oo; c = c', ac/ap = Oc'lap, p = o. 

(8) 

The boundary conditions in (8) in the approximation of a thin diffusional layer are obvious, 
while the initial conditions correspond to the ideathat both the hubble and the cloud sur- 
rounding it~ appearing at the time t = 0, are filled with a gas with an impurity concentra- 
tion co' different from its concentration co in the dense phase far from the bubble. 

Using a Laplace transformation with the parameter p, we obtain the following expressions 
for the transforms of the unknown functions~ 

c(p) = --~- --}- co 21c'~176 (1 -- ~,-'D-- . V  1 exp [ _ p  (~, +..~VD )], p>0,  

c'(p)= Co 1 Co--Co l+r-[b-- r p X-- , p<0,  
p 2 p 

~,= 

(9) 

The corresponding inverse transforms have the form 

c=co+ 2 . 2(Dr),~2+ - -  , p>0, 

2 2 (Dt) ' /2 , P < O. 

(IO) 
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The flux through the outer boundary of the cloud in the case when it is directed into 
the cloud (co > Co') is 

[ __ _)] ( c0_c0 1 , Co co 1 e - ~ - e r f c l / x  meV co ~ e -* q = eV c o i 2 4-c ] / ~ )  " (11) 

When Co' > Co the flux directed from the cloud into the surrounding medium is 

q=eV[---Co-6 ~c;--c~ e_~ + erfc d,-~) ] "~eV(--Co i co--COv_~_ e-T') (12) 

Here we introduce the dimensionless time 

-- V~/D. (13) 

The f l u x e s  i n  (11) and (12) r e f e r  to  a u n i t  s u r f a c e  a r e a  o f  t h e  r e g i o n  of  c l o s e d  c i r c u l a t i o n ;  
the approximate equalities correspond to asymptotic forms at T >> i, The values of the flux- 
es referred to a unit surface area of the bubble itself are obtained by replacing V by Vo in 
(ii) and (12), It is undesirable to introduce the Sherwood number to characterize the mass- 
exchange process in the present case. Since the distribution of the gas inflow velocity 
through the surface of the bubble or cloud is uniform, the distributions of the fluxes of 
the impurity in (ii) and (12) are also uniform. 

It is easy to see from (12) that the flux initially directed from the bubble into the 
dense phase changes its sign with time. Such a "cutoff" of the flux from the bubble occurs 
at the time T = T,, where ~, is the only root of the equation 

-- 2 co - e fcV - - V  (14)  

At times z > T, the gas impurity which is inside the region of closed circulation proves to 
be "conserved" -- it is no longer capable of penetrating into the interior of the dense phase 
of the bed. 

In the present case the quantity Pe~ = VRc/D plays the role of the Peclet number. From 
(i0) we get estimates for the thicknesses of the diffusional layers, 

8..~(Dt),12, 6'.-~Vt, (15) 

with the concentrations in both layers differing very weakly from co at r >> i. It: is seen 
from (15) that this mode is realized at the initial times even when Pex ~ i. The conditions 
for its realization are violated at a time equal in order of magnitude to the lesser of the 
times 

R~ ( eu--u, ,]2 T'--Rc 8u--u, 
T=--~- U--u / ' V U--u (16) 

The ratio of these times is 

T" 1 U--u 
T Pet eu - -  u , '  

P e i =  RcV (17) 
D 

If T' < T, which is possible at large Pel for bubbles which are not too large in beds of large 
particles having a dense phase whose porosity differs considerably from that in the state of 
minimum fluidization, then the second inequality in (6) is violated first, In this case the 
assumption of total mixing in the dense phase, which was adopted in [4-7], is legitimate dur- 
ing some time interval between T and T'. If T < T T then the first inequality in (6) is vio- 
lated first, and at t ~ T the structure of the outer diffusional layer will be determined 
not only by the radial flow (4) but also by the flow (i), However, the assumption of ideal 
mixing inside the region of closed circulations which was adopted in [8-i0]~ is inadequate 
in the present case, since the concentration in the inner layer is close to Co rather than 
to Co' At t ~ max {T, T'} the flow with the stream function (i) becomes important in the 
formation of both diffusional layers. 
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We note that the mode discussed above is essentially nonsteady; moreover, a solution of 
the steady-state analog of the problem (7), (8) is entirely absent. 

Now let us consider the opposite limiting case, when the strong inequalities opposite to 
(6) are satisfied and the flow (i) has the dominant influence on the formation of both dif- 
fusional layers. The establishment of a steady mode of mass exchange as a limit to which the 
true nonsteady mode approaches with an increase in the thickness (15) of these layers is evi- 
dently possible in this case. (We emphasize, however, that to prove that such a mode is re" 
alized in practice, at least in a very deep bed, one must, of course, examine the evolution 
of the mass-exchange process for different initial values of the parameter.) 

In the indicated case the steady-state problem for the concentrations c and c v can be 
written in the form (see [20], for example) 

a 1 a c = D  - , a-ff 

�9 { } 1 }  c'--~-Co, p - + o o ;  c'--+Co, p - + - - o o ;  c == Co, ; 0 
c = c' ,  adOp = Oc'/Op, p = 0; c' Co 

( 1 8 )  

The two conditions at 0 : ~ correspond to the well-known condition at the point of onflow of 
the stream, which has been used in [20] and other reports. 

Introducing the new variables , and ~ in the standard way, where the stream function 
is defined in (i) while ~ is given by the equation 

~=~I (U--u) D 3Rc (2 + 3 cos 0 - -  cos3 0 ) , '  (19) 

we convert the problem (18) to the form 

c-+co. ~ o o ;  c'-,-Co. , - , - - o o ;  
c = c', at~O, = Oc'/O,. , = 0; 

o=o. 

(20) 

The solution of the problem (20) has the form 

�9 ~I ) �9 ' 

c = q +  Co- -Co er ic  , c ' = c o +  c o - - C o  e r i c - -  ~ 
2 2 2 (21) 

while the total flux of the gaseous impurity through a unit surface area of the region of 
closed circulation is represented in the form 

�9 I ~ - - c ~ l  q = ~ +  qO, q C= sV ~'+c~ qO = s D  6' (22)  
2 ' 6 +  ' 

where the upper and lower signs refer to fluxes into and out of the bubble, respectively , 
while the thicknesses of the diffusional layers are 

8 = 8 '  =~---~a--- ( u--uReD )11, (2 _ cos 0), cos O (23)  

The total flux is obtained after integration of (22) over the sphere r = Re; we have 
Q = • + QD where 

QC 4rm c o + c o  2 . co+c~  ( U + 2 u \ ' / 3  
= .) R v; 2 Rc V = 4~---f-- \ U - - u  

/+  QD _ 4 e Ico-- col t(u - -  u) DI'/2R~/~ = 4 V/ -  ~ -  -~- e Ico - -  col I (U + 2u) D],/2 R~/2.  

(24) 

The quantity Pc2 = RcU/D plays the role of the Peclet number, which must be large in 
comparison with unity for the adequacy of the approximation of a thin diffusional layer used, 
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The ratio of the total flux components (24) is important: 

QcQ~ = Vs co-co co+co ~ p T z (  1 -  uU ) ~/~U-u~V , pe~.:--R~UD (25) 

It is seen that these components are comparable in magnitude, generally speaking , since the 
parameter (U -- u)/V in (25), which can be large, is multiplied by the small quantitz Pc2-1/~. 
Therefore, it is inadmissible in general to neglect the convective fluxcomponent ~C. Only 
in the case when the state of the dense phase is close to that reached at minimum fluidiza- 
tion can one take Q = QD and introduce the Sherwood number 

S h ~  Q 1 1/2 1 +  1 - -  (26) 
4~Re~D [CO -- Col = ~ 

which  p r o v e s  t o  be  t w i c e  as  s m a l l  as  t h a t  c a l c u l a t e d  i n  [ 1 0 ] ,  (The e r r o r  i n  [10]  i s  c o n n e c t -  
ed with the use of the unjustified assumption of total mixing inside the region of closed 
circulation.) 

It is easy to see that when the flux of the impurity is directed from the bubble into 
the dense phase a change in the sign of the flux is also possible, with the "cutoff" condi- 
tion analogous to (14) being 

Qo/QC = 1 (27) 

in this case. It is seen that if Q = Qc + QD > 0 at some time (i.e., at some level in the 
bed), then the condition (27) can be fully satisfied at some subsequent time (i.e., at a 
higher level). In particular, for large bubbles, when U -- u = U, we find that the removal 
of the impurity into the dense phase ceases when the bubble radius reaches the critical value 
(we use (3), (4), and (7)) 

R,.~3.131 c~ 14 g Dz 7 * 

Co + Co (8u - -  U,) ~ (28) 

The q u a n t i t y  V - cu -- u . ,  wh ich  depends  on t h e  d e g r e e  o f  d e p a r t u r e  o f  t h e  s t a t e  o f  t h e  
dense  p h a s e  f rom t h a t  r e a c h e d  i n  t h e  s t a t e  o f  minimum f l u i d i z a t i o n ,  p l a y e d  a n o t a b l e  r o l e  
i n  t h e  a n a l y s i s  p r e s e n t e d  a b o v e .  T h i s  d e p a r t u r e ,  due ,  f o r  ex am p le ,  to  c e r t a i n  d i f f e r e n c e s  
o f  a c t u a l  f l u i d i z e d  s y s t e m s  f rom t h e  i d e a l  one  c o r r e s p o n d i n g  t o  t h e  r e q u i r e m e n t s  o f  t h e  two-  
phase theory of fluidization, can be quite significant. For example, with the introduction 
of the gas in jets through nozzles or the openings of a perforated gas-distribution grid, 
about half of the excess gas volume (above that required for initial fluidization) initially 
enters precisely into the dense rather than the dilute phase [4, 21, 22], The porosity of 
the dense phase is appreciably higher than the porosity of the bed in the close-packed state 
and with uniform gas distribution so long as the fluidization number is not too close to un- 
ity [23]. Therefore, the influence of the convective flux due to the growth of a bubble on 
the mass exchange is always important, at least in the lower part of the bed, 

As it is easy to see, the mass-exchange intensity per unit area of the mass-exchange 
surface decreases rapidly with an increase in the height of the bubble in the bed, with the 
rate of this decrease declining monotonically. Dependences-of this type are usually observed 
in experiments both with single and with multiple bubbles (see [24], for example), Moreover, 
if the impurity enters the bed with the bubbles, then the complete cessation of its removal 
into the dense phase is possible as they rise in the bed. On the whole, the quantities char- 
acterizing the mass-exchange intensity in this case prove to be far lower under actual condi- 
tions than the values which would he obtained by neglecting the convective flux connected 
with bubble growth. This enables one to understand to some extent the fact that the coeffi- 
cients of mass exchange obtained, for example, in experiments with chemical reactors are con- 
siderably lower than those estimated theoretically on the basis of approximate models in 
which bubble growth is ignored, as was noted more than once by the authors of [24]~ 

Further, for a bed of large particles, a pseudoturbulent convective dispersion predom- 
inates in the diffusional transfer, and one can write D - (u -- u,) 2 At, where At is the 
lifetime of the pseudoturbulent pulsations. The quantity V is proportional to r -- u,, so 
that when the porosity of the dense phase is fixed it is approximately proportional to u or 
u,. Therefore, the multiplier in the definition of the dimensionless time T in (13) depends 
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weakly on u or u , and hence on the particle size, and the dependence of q on these quanti- 
ties in (Ii) and (12) is determined by the multiplier V, This allows one to understand at 
once the observed increase in the mass-exchange intensity with an increase in the particle 
size of a bed [25-27]. A similar conclusion can also be drawn from an examination of Eqs, 
(24) for the second limiting mode. For a bed of fine particles D is proportional to the 
coefficient of molecular diffusion, whereas V - ~u ~ u, as before. Therefore, a fixed t 
will correspond to a value of T which decreases rapidly with a decrease in particle size, 
which leads to a sharp increase in q, as seen from (ii) and (12), which is more than ade- 
quate to compensate for the corresponding decrease in q owing to the presence of the multi- 
plier V. Consequently, for fine particles one should expect a decrease in the mass-exchange 
intensity with an increase in particle size; an intensity minimum should be observed at some 
intermediate size. The same conclusion can be drawn from an analysis of (22)-(24) in the 
case when the flux of the impurity is directed into the dense phase, This is qualitatively 
confirmed by tests conducted at the Institute of Heat and Mass Exchange, Academy of Sciences 
of the Belorussian SSR, some of which are described in [27]. 

We have not allowed for the variation of the state of the dense phase over the height 
of the bed due to the outflow of gas from it into the large number of rising bubbles, This 
effect should evidently promote a faster exchange of the modes of mass exchange due to the 
decrease in the effective value of V. It is obvious that to allow for this effect it is en- 
tirely necessary to consider the evolution of a collection of bubbles and of the dense phase 
from some initial state~ assigned from the results of [21-23]~ for example, with allowance 
for the interaction and coalescence of the bubbles, which considerably complicates the prob- 
lem, very complicated even without it, of the mass exchange of a single bubble with the 
dense phase, which was analyzed above only in the simplest cases. 

NOTATION 

c, c', concentrations of impurity; cD, effective coefficient of diffusion; h, vertical 
coordinate in bed; Q, q, total flux of impurity and flux normalized to a unit area of the 
mass-exchange surface; QC QD fluxes connected with convective and diffusional transfer; 
Rc, Rb, R,~ radii of region of closed circulation and of bubble and critical value of radius 
defined in (28); r, radial coordinate; T, T', characteristic times from (16); t, time; U, Eup 
u,, velocities of bubble rise, of filtration in the dense phase, and of minimum fluidization~ 
respectively; Ur, us, velocity components of flow over a bubble of constant size; V, vo, ve- 
locities defined in (7) and (4); ~, ~', thicknesses of diffusional layers; ~, polar angle; 
~, parameter in (9); ~, variable defined in (19); p = r -- RG~_T , dimensionless time; T,, 
root of Eq. (14); ~, stream function from (i); quantities wz=n a prime refer to the region 
of closed circulation. 
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THERMAL REGIME OF MOIST CONCRETE WALLS SUBMERGED INTO THE GROUND 

OF STRUCTURES UNDER CONDITIONS OF CONVECTIVE DRYING 

V. M. Gritsev and S. I. Bykov UDC 536.21 

The article provides the solution of the heat conduttion for a semibounded massif 
with the boundary condition of the third kind taking into account the effect of 
evaporation on the heat-exchange surface, 

Drying is a complex process of non-steady-state heat and moisture exchange which~ ac- 
cording to the analytical theory [I, 2], is described by the system of differential equations 

Ot r Ou 
- a v ~ + ~ - -  - - ,  

O~ c O~ 

(1) 
Ou 
- - - = a ~ v 2 u + a ~ 6 v ~ .  
Oz 
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